V. 55 N. 1 (2017)

In favor of the phonemic principle: a review of neurophysiological and neuroimaging explorations into the neural correlates of phonological competence

Alessandra Cecilia Rampinini
IMT School for Advanced Studies Lucca
Emiliano Ricciardi
IMT School for Advanced Studies, Lucca

Pubblicato 2017-05-24

Parole chiave

  • neurolinguistics,
  • phonology,
  • motor theory of speech perception


In the last thirty years, in vivo brain structural and functional exploration has sparked vivid light on the neural correlates of language. Along these lines, the study of phonological competence has offered a ‘neural view’ into the organization of basic speech-sensitive areas, improving the sensitivity of pre-surgical mapping and brain-computer interface-based communication. Nevertheless, only rarely the significance of these results has been recognized in the context of a century-long discussion around the theoretical, physical and cognitive consistency of the phoneme itself. Here we review recent investigations into speech perception, imagery and production at the segmental level through neuroimaging and neurophysiological techniques, showing that phonemes are processed at all stages of speech as discrete entities, which are categorized in cognition as unique products of their acoustic and articulatory features, despite the seamless flow of the speech signal. These results seem to expand the scope of the motor theory of speech perception, as well as the relationship that mirror-based mechanisms entertain with language processing.

Riferimenti bibliografici

  1. ALBANO LEONI, F. (2009), Dei suoni e dei sensi. Il volto fonico delle parole, Il Mulino, Bologna.
  2. ALKU, P., et al. (2001), The periodic structure of vowel sounds is reflected in human electromagnetic brain responses, in «Neuroscience letters», 298, 1, pp. 25-28.
  3. ARSENAULT, J. S., and BUCHSBAUM, B. R. (2015), Distributed neural representations of phonological features during speech perception, in «The Journal of Neuroscience», 35, 2, pp. 634-642.
  4. BLOOMFIELD, L. (1933), Language, Holt, New York.
  5. BONTE, M., et al. (2014), Task-dependent decoding of speaker and vowel identity from auditory cortical response patterns, in «The Journal of Neuroscience», 34, 13, pp. 4548-4557.
  6. BONTE, M., et al. (2016), Developmental refinement of cortical systems for speech and voice processing, in «NeuroImage», 128, pp. 373-384.
  7. BOUCHARD, K. E., and CHANG, E. F. (2014), Control of spoken vowel acoustics and the influence of phonetic context in human speech sensorimotor cortex, in «The Journal of Neuroscience», 34, 38, pp. 12662-12677.
  8. BOUCHARD, K. E., et al. (2013), Functional organization of human sensorimotor cortex for speech articulation, in «Nature», 495, 7441, pp. 327-332.
  9. BROCA, P. (1861), Perte de la parole, ramollissement chronique et destruction partielle du lobe antérieur gauche du cerveau, in «Bulletins de la Société d'anthropologie de Paris», 2, 1, pp. 235-238.
  10. BROCA, P. (1865), Sur le siège de la faculté du langage articulé, in «Bulletins de la Société d'anthropologie de Paris», 6, 1, pp. 377-393.
  11. BROWN, S., et al. (2008), A larynx area in the human motor cortex, in «Cerebral Cortex», 18, 4, pp. 837-845.
  12. BUCHSBAUM, B. R., et al. (2011), Conduction aphasia, sensory-motor integration, and phonological short-term memory–an aggregate analysis of lesion and fMRI data, in «Brain and language», 119, 3, pp. 119-128.
  13. BUCHSBAUM, B. R., et al. (2001), Role of left posterior superior temporal gyrus in phonological processing for speech perception and production, in «Cognitive Science», 25, 5, pp. 663-678.
  14. CALLAN, D. E., et al. (2000), Single-sweep EEG analysis of neural processes underlying perception and production of vowels, in «Cognitive brain research», 10, 1, pp. 173-176.
  15. CHAKRABARTI, S., et al. (2013), Predicting mel-frequency cepstral coefficients from electrocorticographic signals during continuous speech production, Abstract presented at Proceedings of the Sixth International IEEE/EMBS Neural Engineering Conference, San Diego, CA.
  16. CHANG, E. F., et al. (2010), Categorical speech representation in human superior temporal gyrus, in «Nature neuroscience», 13, 11, pp. 1428-1432.
  17. CHEUNG, C., et al. (2016), The auditory representation of speech sounds in human motor cortex, in «eLife», 5, pp. e12577.
  18. CHOMSKY, N., and HALLE, M. (1968), The sound pattern of English, Harper & Row, New York.
  19. CORBALLIS, M. C. (2010), Mirror neurons and the evolution of language, in «Brain and Language», 112, 1, pp. 25-35.
  20. CORREIA, J. M., et al. (2015), Decoding articulatory features from fMRI responses in dorsal speech regions, in «The Journal of Neuroscience», 35, 45, pp. 15015-15025.
  21. DASALLA, C. S., et al. (2009), Single-trial classification of vowel speech imagery using common spatial patterns, in «Neural Networks», 22, 9, pp. 1334-1339.
  22. DAVIS, T., et al. (2014), What do differences between multi-voxel and univariate analysis mean? How subject-, voxel-, and trial-level variance impact fMRI analysis, in «NeuroImage», 97, pp. 271-283.
  23. ENGINEER, C. T., et al. (2008), Cortical activity patterns predict speech discrimination ability, in «Nature neuroscience», 11, 5, pp. 603-608.
  24. FADIGA, L., et al. (2002), Speech listening specifically modulates the excitability of tongue muscles: a TMS study, in «European Journal of Neuroscience», 15, 2, pp. 399-402.
  25. FADIGA, L., et al. (1995), Motor facilitation during action observation: a magnetic stimulation study, in «Journal of neurophysiology», 73, 6, pp. 2608-2611.
  26. FORMISANO, E., et al. (2008), " Who" Is Saying" What"? Brain-Based Decoding of Human Voice and Speech, in «Science», 322, 5903, pp. 970-973.
  27. GALANTUCCI, B., et al. (2006), The motor theory of speech perception reviewed, in «Psychonomic bulletin & review», 13, 3, pp. 361-377.
  28. GALLESE, V., et al. (1996), Action recognition in the premotor cortex, in «Brain», 119, 2, pp. 593-609.
  29. GALLESE, V., and GOLDMAN, A. (1998), Mirror neurons and the simulation theory of mind-reading, in «Trends in cognitive sciences», 2, 12, pp. 493-501.
  30. GUASTI, M. T. (2004), Language acquisition: The growth of grammar, MIT Press, Boston.
  31. HÄMÄLÄINEN, M., et al. (1993), Magnetoencephalography—theory, instrumentation, and applications to noninvasive studies of the working human brain, in «Reviews of modern Physics», 65, 2, pp. 413.
  32. HANDJARAS, G., et al. (2016), How concepts are encoded in the human brain: A modality independent, category-based cortical organization of semantic knowledge, in «NeuroImage», 135, pp. 232-242.
  33. HICKOK, G. (2009), The functional neuroanatomy of language, in «Physics of Life Reviews», 6, 3, pp. 121-143.
  34. HICKOK, G., and POEPPEL, D. (2000), Towards a functional neuroanatomy of speech perception, in «Trends in Cognitive Science», 4, 4, pp. 131-138.
  35. HUETTEL, S. A., et al. (2004), Functional magnetic resonance imaging, Sinauer Associates, Sunderland.
  36. HURFORD, J. R. (2004), Language beyond our grasp: what mirror neurons can, and cannot, do for the evolution of language, in «Evolution of communication systems», pp. 297-314.
  37. HYMES, D. H., and FOUGHT, J. G. (1981), American structuralism, Walter de Gruyter, Berlin.
  38. HYVÄRINEN, A., and OJA, E. (2000), Independent component analysis: algorithms and applications, in «Neural networks», 13, 4, pp. 411-430.
  39. IACOBONI, M. (2008), Imitation, Empathy, and Mirror Neurons, in «Annual Review of Psychology», 60, 1, pp. 653-670.
  40. IACOBONI, M., et al. (1999), Cortical mechanisms of human imitation, in «Science», 286, 5449, pp. 2526-2528.
  41. IKEDA, S., et al. (2014), Neural decoding of single vowels during covert articulation using electrocorticography, in «Frontiers in human neuroscience», 8, 125.
  42. INDEFREY, P., and LEVELT, W. J. M. (2004), The spatial and temporal signatures of word production components, in «Cognition», 92, 1, pp. 101-144.
  43. JACQUEMOT, C., et al. (2003), Phonological grammar shapes the auditory cortex: a functional magnetic resonance imaging study, in «The Journal of Neuroscience», 23, 29, pp. 9541-9546.
  44. JAKOBSON, R. (1941), Child Language, Aphasia and Linguistic Universals, Mouton, The Hague.
  45. JAKOBSON, R., et al. (1952), Preliminaries to speech analysis. The distinctive features and their correlates, The MIT Press, Boston.
  46. JAKOBSON, R., and HALLE, M. (1956, [2010-2]), Fundamentals of language, in VAN SCHOONEVELD, C. H. (Ed.). Janua linguarum series minor. Studia memoriae Nicolai van Wijk dedicata, 1, The Gruyter Mouton, Berlin, Boston.
  47. KANAS, V. G., et al. (2014), Joint spatial-spectral feature space clustering for speech activity detection from ECoG signals, in «IEEE Transactions on Biomedical Engineering», 61, 4, pp. 1241-1250.
  48. KILNER, J. M., et al. (2009), Evidence of mirror neurons in human inferior frontal gyrus, in «The Journal of Neuroscience», 29, 32, pp. 10153-10159.
  49. KIM, J., et al. (2014), EEG classification in a single-trial basis for vowel speech perception using multivariate empirical mode decomposition, in «Journal of neural engineering», 11, 3, pp. 036010.
  50. KOHLER, E., et al. (2002), Hearing sounds, understanding actions: action representation in mirror neurons, in «Science», 297, 5582, pp. 846-848.
  51. KRIEGESKORTE, N., and BANDETTINI, P. (2007), Analyzing for information, not activation, to exploit high-resolution fMRI, in «Neuroimage», 38, 4, pp. 649-662.
  52. KRIEGESKORTE, N., et al. (2006), Information-based functional brain mapping, in «Proceedings of the National Academy of Sciences», 103, 10, pp. 3863-3868.
  53. LANE, H. (1965), The motor theory of speech perception: A critical review, in «Psychological Review», 72, 4, pp. 275.
  54. LEMM, S., et al. (2011), Introduction to machine learning for brain imaging, in «Neuroimage», 56, 2, pp. 387-399.
  55. LEUTHARDT, E. C., et al. (2011), Using the electrocorticographic speech network to control a brain–computer interface in humans, in «Journal of neural engineering», 8, 3, pp. 036004.
  56. LIBERMAN, A. M., and MATTINGLY, I. G. (1985), The motor theory of speech perception revised, in «Cognition», 21, 1, pp. 1-36.
  57. LIEBENTHAL, E., et al. (2005), Neural substrates of phonemic perception, in «Cerebral cortex», 15, 10, pp. 1621-1631.
  58. LINGNAU, A., et al. (2009), Asymmetric fMRI adaptation reveals no evidence for mirror neurons in humans, in «Proceedings of the National Academy of Sciences», 106, 24, pp. 9925-9930.
  59. LOTTE, F., et al. (2015), Electrocorticographic representations of segmental features in continuous speech, in «Frontiers in human neuroscience», 9, pp. 97.
  60. MANCA, A. D., and GRIMALDI, M. (2016), Vowels and Consonants in the Brain: Evidence from Magnetoencephalographic Studies on the N1m in Normal-Hearing Listeners, in «Frontiers in Psychology», 7, pp. 1413.
  61. MARINI, A. (2008), Manuale di neurolinguistica, Carocci, Roma.
  62. MAROTTA, G. (2010), Sulla (presunta) morte del fonema, in «Studi e saggi linguistici», pp. 283-304.
  63. MARTIN, S., et al. (2014), Decoding spectrotemporal features of overt and covert speech from the human cortex, in «Frontiers in neuroengineering», 7, pp. 14.
  64. MESGARANI, N., et al. (2014), Phonetic feature encoding in human superior temporal gyrus, in «Science», 343, 6174, pp. 1006-1010.
  65. MESGARANI, N., et al. (2008), Phoneme representation and classification in primary auditory cortex, in «The Journal of the Acoustical Society of America», 123, 2, pp. 899-909.
  66. MILLER, K. J., et al. (2007), Real-time functional brain mapping using electrocorticography, in «Neuroimage», 37, 2, pp. 504-507.
  67. MUGDAN, J. (2011), On the Origins of the Term Phoneme, in «Historiographia Linguistica», 38, 1-2, pp. 85-110.
  68. MUGDAN, J. (2014), More on the origins of the term phoneme, in «Historiographia Linguistica», 41, 1, pp. 185-187.
  69. MUGLER, E. M., et al. (2014), Direct classification of all American English phonemes using signals from functional speech motor cortex, in «Journal of neural engineering», 11, 3, pp. 035015.
  70. NASELARIS, T., et al. (2011), Encoding and decoding in fMRI, in «Neuroimage», 56, 2, pp. 400-410.
  71. NIEDERMEYER, E., and DA SILVA, F. H. L. (2005), Electroencephalography: basic principles, clinical applications, and related fields, Lippincott Williams & Wilkins, Philadelphia.
  72. OCCELLI, F., et al. (2016), A Neural Substrate for Rapid Timbre Recognition? Neural and Behavioral Discrimination of Very Brief Acoustic Vowels, in «Cerebral Cortex», 26, 6, pp. 2483-2496.
  73. OGAWA, S., et al. (1990), Brain magnetic resonance imaging with contrast dependent on blood oxygenation, in «Proceedings of the National Academy of Sciences», 87, 24, pp. 9868-9872.
  74. OPITZ, B., et al. (2003), Phonological processing during language production: fMRI evidence for a shared production-comprehension network, in «Cognitive Brain Research», 16, 2, pp. 285-296.
  75. PASLEY, B. N., et al. (2012), Reconstructing speech from human auditory cortex, in «PLoS Biology», 10, 1, pp. e1001251.
  76. PEI, X., et al. (2011), Decoding vowels and consonants in spoken and imagined words using electrocorticographic signals in humans, in «Journal of neural engineering», 8, 4, pp. 046028.
  77. PENFIELD, W., and JASPER, H. (1954), Epilepsy and the functional anatomy of the human brain, in «Science», 119, 3097, pp. 645-646.
  78. PRICE, C. J. (2000), The anatomy of language: contributions from functional neuroimaging, in «Journal of Anatomy», 197 Pt 3, pp. 335-359.
  79. PRICE, C. J. (2010), The anatomy of language: a review of 100 fMRI studies published in 2009, in «Annals of the New York Academy of Sciences», 1191, pp. 62-88.
  80. PRICE, C. J. (2012), A review and synthesis of the first 20 years of PET and fMRI studies of heard speech, spoken language and reading, in «Neuroimage», 62, 2, pp. 816-847.
  81. RAMACHANDRAN, V. S. (2000), Mirror neurons and imitation learning as the driving force behind “the great leap forward” in human evolution, Edge New York.
  82. RAMPININI, A., et al. (2015). Cortical signature of vowels in listening, covert & overt articulation. Abstract presented at the XXI Meeting of the International Organization for Human Brain Mapping, Honolulu, Hawaii, USA.
  83. RIMOL, L. M., et al. (2005), Processing of sub-syllabic speech units in the posterior temporal lobe: an fMRI study, in «Neuroimage», 26, 4, pp. 1059-1067.
  84. RIZZOLATTI, G., and ARBIB, M. A. (1998), Language within our grasp, in «Trends in neurosciences», 21, 5, pp. 188-194.
  85. RIZZOLATTI, G., et al. (1996), Premotor cortex and the recognition of motor actions, in «Cognitive brain research», 3, 2, pp. 131-141.
  86. RIZZOLATTI, G., et al. (2001), Neurophysiological mechanisms underlying the understanding and imitation of action, in «Nature Reviews Neuroscience», 2, 9, pp. 661-670.
  87. RUESCHER, J., et al. (2013), Somatotopic mapping of natural upper-and lower-extremity movements and speech production with high gamma electrocorticography, in «Neuroimage», 81, pp. 164-177.
  88. SAPIR, E. (1925), Sound patterns in language, in «Language», 1, 2, pp. 37-51.
  89. SCOTT, S. K., and JOHNSRUDE, I. S. (2003), The neuroanatomical and functional organization of speech perception, in «Trends in neurosciences», 26, 2, pp. 100-107.
  90. SKIPPER, J. I., et al. (2005), Listening to talking faces: motor cortical activation during speech perception, in «Neuroimage», 25, 1, pp. 76-89.
  91. STANKIEWICZ, E. (1972), A Baudouin de Courtenay anthology: the beginnings of structural linguistics, Indiana University Press, Bloomington.
  92. STUDDERT-KENNEDY, M., et al. (1970), Motor theory of speech perception: A reply to Lane's critical review, in «Psychological Review», 77, 3, pp. 234-249.
  93. TANKUS, A., et al. (2012), Structured neuronal encoding and decoding of human speech features, in «Nature communications», 3, pp. 1015.
  94. TRUBETZKOY, N. S. (1969), Principles of phonology, University of California Press, Berkeley.
  95. TURELLA, L., et al. (2009), Mirror neurons in humans: consisting or confounding evidence?, in «Brain and language», 108, 1, pp. 10-21.
  96. VIHMAN, M. (1991), Ontogeny of phonetic gestures: Speech production, in STUDDERT-KENNEDY, M. & MATTINGLY, I. G. (Eds.). Modularity and the motor theory of speech perception: Proceedings of a conference to honor Alvin M. Liberman, pp. 69-84, Erlbaum, Hillsdale.
  97. VIHMAN, M. (1993), Variable paths to early word production, in «Journal of Phonetics», 21, 1-2, pp. 61-82.
  98. VILLRINGER, A., and DIRNAGL, U. (1994), Coupling of brain activity and cerebral blood flow: basis of functional neuroimaging, in «Cerebrovascular and brain metabolism reviews», 7, 3, pp. 240-276.
  99. WANG, L., et al. (2013), Analysis and classification of speech imagery EEG for BCI, in «Biomedical Signal Processing and Control», 8, 6, pp. 901-908.
  100. WANG, R., et al. (2012), Using phase to recognize English phonemes and their distinctive features in the brain, in «Proceedings of the National Academy of Sciences», 109, 50, pp. 20685-20690.
  101. WATKINS, K., and PAUS, T. (2004), Modulation of motor excitability during speech perception: the role of Broca's area, in «Journal of cognitive neuroscience», 16, 6, pp. 978-987.
  102. WEISS, S., and MUELLER, H. M. (2003), The contribution of EEG coherence to the investigation of language, in «Brain and language», 85, 2, pp. 325-343.
  103. WERNICKE, C. (1874), Der aphasische Symptomencomplex: eine psychologische Studie auf anatomischer Basis, Max Cohn & Weigert, Breslau.
  104. WESTERMANN, G., and MIRANDA, E. R. (2004), A new model of sensorimotor coupling in the development of speech, in «Brain and language», 89, 2, pp. 393-400.
  105. WILSON, S. M., et al. (2004), Listening to speech activates motor areas involved in speech production, in «Nature neuroscience», 7, 7, pp. 701-702.
  106. WISE, R. J. S., et al. (1999), Brain regions involved in articulation, in «The Lancet», 353, 9158, pp. 1057-1061.
  107. YOSHIMURA, N., et al. (2016), Decoding of covert vowel articulation using electroencephalography cortical currents, in «Frontiers in neuroscience», 10.
  108. ZATORRE, R. J., and EVANS, A. C. (1992), Lateralization of phonetic and pitch discrimination in speech processing, in «Science», 256, 5058, pp. 846.
  109. ZIEGLER, W. (2008), Neurophonetics, in BALL, M. J., PERKINS, M. R., MÜLLER, N. & HOWARD, S. (Eds.). The Handbook of Clinical Linguistics, Blackwell, Oxford.